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Abstract: A fast smoothness constrained algorithm for the 2-D inversion of direct current and induced
polarization data is presented. The procedure is fully automated and accelerated by the use of a Quasi-
Newton update of the Jacobian matrix. The need for a fast algorithm is discussed and a detailed presentation
of its features is given. The features of the algorithm are presented in detail and comparisons to other
techniques are shown. The algorithm is also used to invert Induced Polarization (IP) data sets. Finally, tests
of the algorithm with synthetic and real data are presented. The algorithm proves to be robust noise
insensitive and produces good quality inversions. The tests with real data indicated that it could be a reliable
tool for data interpretation.
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INTRODUCTION

Electrical resistivity and induced polarization
techniques are used to a wide range of geophysical
problems. Among the existing measuring modes 2-D
resistivity/IP prospecting can give information about
both the lateral and vertical variations of the earth's
properties and can be used in a qualitative fashion for
the identification of the structure and depth of buried
features.

The potential use of 2-D prospecting is of
considerable current interest due to the development
of automatically multiplexed measuring systems
which facilitate the acquisition of a large number of
measurements in a limited time (Noel and Walker
1991; Dahlin, 1993). However, it is essential to
develop reliable and robust interpretation-inversion
algorithms, which are able to produce a “deblurred”
subsurface image in order to render the information
accessible to non-experts.

The traditional methods of data interpretation, such
as the construction of a pseudosection (Edwards,
1977) provide only a rather qualitative insight into the
region of interest and can only cope with the
traditional (surface linear-arrays, set range of
spacings) measuring schemes. Other interpretation
techniques such as an operator-controlled data fitting

technique   (eg. Stretenovic  and  Marcetic, 1992)   are
inadequate for interpreting large data sets. Approxi-
mate techniques such as the back-projection technique
(Noel and Walker, 1991) can produce artefacts and
their results are still not easily accessible to non-
experts.

The advent of fast computers allowed the
development of the resistivity and IP inversion
schemes, which aim to construct an estimate of a
subsurface resistivity distribution, which is consistent
with the experimental data. This is a fully non-linear
procedure and its "accurate" treatment involves
iterative full-matrix inversion algorithms, which can
give good quality results. The inversion of earth
resistivity and IP data is an ill-conditioned problem
because large variations in physically defined
parameters may result into small variations in the
observed data that make the inversion algorithm
unstable. Additionally, factors such as the noise
contamination of the data and an inappropriate choice
of the parametrized blocks can further increase this
instability.

Several non-linear resistivity and IP inversion
algorithms which can handle ill-conditioning have
been reported in literature mainly based on the
damped least-squares that is also known as the
Levenberg-Marquadt method (Trip et al., 1984; Smith
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and Vozoff, 1984; Pelton et al., 1978). The
Levenberg-Marquadt method can produce very good
results but spurious noise-related artifacts can appear
in the case of noisy data. Further, the produced results
will be highly dependent on the ``accidental'' (success-
ful or not) choice of the initial model (Constable et al.,
1987).

One other way to tackle the instability of the
inverse problem is to impose a smoothness constraint.
The technique has been proposed for the geophysical
case by Constable et al. (1987) who named it Occam
inversion (due to the 14th century philosopher) and
they applied it to the 1-D resistivity and magneto-
telluric inverse problems. The smoothness constraint
inversion will produce a simplified model which is a
reasonable representation of the subsurface and at the
same time guarantees the inversion stability and most
importantly produces a model which is based on the
characteristic that the user has chosen (namely the
pattern of the smoothness) and not on some arbitrary
initial guess. Smoothness constrained algorithms for
the 2-D earth resistivity case have been presented by
Sasaki (1989, 1992),  Xu (1993), Elis and Oldenburg
(1994). Further, Oldenburg and Li (1994) presented
schemes that imposed smoothness constrain to the
inversion of  IP data.

The advent of automatically controlled instrumen-
tation increased the amount of the collected measu-
rements and the speed of the data collection. A rapid
initial interpretation of these data sets is valuable and
will help to check if the right survey settings are
chosen. Traditionally, the “approximate” inversion
techniques are used for this purpose whilst “accurate”
techniques are usually used for final processing/ inter-
pretation after the survey has finished.

For these reasons, it is clear that there is a scope for
a fast fully non-linear algorithm, which could cope
with the increased amount of data and could be used
as a tool for more accurate initial data interpretation.
For most of the iterative inversion schemes and for a
typical data set  (eg.. 40 electrodes, 300 measure-
ments) the calculation of the Jacobian matrix takes
approximately 70% of the iteration time thus the
inversion procedure can be accelerated significantly
by avoiding the direct calculation of the Jacobian at
every iteration. This can be achieved by the use of the
Quasi-Newton techniques.

This paper involves the presentation of a Quasi-
Newton smoothness constrained inversion scheme for
the 2-D inversion of earth resistivity and IP data,
which is based on the work of Tsourlos (1995). Loke
and Barker (1996) have developed a similar algorithm
independently for the resistivity case. A proven 2.5-D
Finite Element Method (FEM) scheme was used as
the platform for the forward resistivity calculations
(Tsourlos, 1995). The adjoint equation approach
(McGillivray and Oldenburg, 1990) was incorporated
into the FEM scheme in order to calculate the

Jacobian matrix J (the divergence of the observations
in respect of changes of the model's resistivity) when
necessary.

QUASI-NEWTON TECHNIQUES

Quasi-Newton (QN) (or variable metric) techniques
are a class of non-linear optimization methods which
seek to approximate the Jacobian at each iteration
instead of calculating it from scratch. This type of
method is similar to  the Gauss-Newton technique
except that the Jacobian matrix J is approximated by a
matrix  B which is corrected and updated from
iteration to iteration (Fletcher, 1987). Use of the QN
techniques in the 2-D resistivity inverse problem has
been reported by Shima (1990) who used Powell's
algorithm (Powell, 1970). Further, Loke and Barker
(1996) presented a QN technique within a smoothness
constrained algorithm.

Consider a measurement vector y and an initial
property distribution vector xo. If Jo is the Jacobian
matrix and  F(xo) is the forward modelling response
then one iteration of any optimization technique
which involves matrix inversion will produce a
parameter correction vector dxo. The forward response
for the new estimate will be F(xo + dxo ). The target is
to find an approximate expression  B1 of the Jacobian
J1  for the new iteration without calculating it from
scratch. Broyden (1965) showed that the unique B1

can be defined as:
B1 = Jo  - {Jo dxo -[F(xo)-F(x1) ]}dxo  /( dxo

T dxo )     (1)
Equation (1) can be generalized to update the

estimate of the Jacobian in every iteration. For the k+1
iteration the approximate estimate is given by:

Bk+1 = Bk -{ Bk dxk  - [F(xk) -F(xk+1)]}dxk

                                                                                   / (dxk
T dxk )           (2)

One of the disadvantages of the QN methods is that
they have superlinear convergence, as opposed to the
quadratic convergence of the Newton-like methods. In
2-D resistivity inversion QN techniques typically
result in an average increase of 1-3 iterations. For
most cases, however, this trade-off leads to less
computational time although the number of iterations
increases. Only in cases when the iteration time is
dominated by the matrix inversion (extremely large
data sets) does this become a real disadvantage.

The main disadvantage of the technique is that it is
subject to errors involved with the finite difference
type of approximation of equation (2). One problem is
that round-off errors propagate: each new approximate
Jacobian is a function of the previous (also approx-
imate) Jacobian. This is an extra source of error in the
inversion (additional to the observation errors) and
might cause instability. It will be shown that was not
found to be the case: the smoothness constraint in the
inversion  scheme  prevented  the  technique from
causing unstable solutions.
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ALGORITHM DESCRIPTION

During the 2-D resistivity reconstruction procedure,
the subsurface is considered, as a set of individual
blocks that have intrinsic resistivity parameters
subject to the independent adjusment while the size of
the blocks kept constant. The aim is to calculate a
subsurface resistivity estimate x for which the
difference dy between the observed data y and the
modelled data F(x)  (calculated using the forward
modelling technique) is minimized

Since we are dealing with a non-linear problem this
procedure has to be iterative: In every iteration, an
improved resistivity estimate is sought and eventually
the procedure stops until certain convergence criteria
are met (i.e. until the RMS error is practically stable).
An Occam's inversion scheme was applied in order to
produce a stable non-linear algorithm for the 2-D
inversion of earth resistivity data. A general
description of the algorithm follows.

Initial Steps

Given a measured data set y
• Define the model parameters.
• Produce the matrix C that describes the

smoothness pattern of the model.
• Define an initial resistivity estimate  xo and

calculate the model response  f(x0).
• Calculate the Jacobian matrix  J0 which

corresponds to xo using the adjoint equation approach
and set B0=J0.

• Set the initial value ì0 of the Lagranian
multiplier.

• Set the inversion stopping criteria: slow
convergence rate (practically stable RMS error) or
divergence.

1. At the kth  iteration the resistivity correction
vector dxk  is given by

dxk   = (Bk 
T Bk + (CT C)-1 Bk 

T dyk                         (3)
where Bk is the Quasi-Newton Jacobian estimate

which corresponds to the  xk  resistivity distribution,
and dyk = y-F(xk).

2.  Set the new resistivity estimate  xk+1 = xk  + dxk

and calculate the forward response of the new model
F(xk+1).

3. If one of the stopping criteria are met then
terminate the procedure else find the new QN estimate
of the Jacobian matrix using equation (3)  and go to
step 1.
A simplified flow-chart of the QN Occam algorithm is
shown in Figure 1.

Inversion of the IP data

The IP effect can be described by a macroscopic
physical parameter called chargeability m that is a
unitless parameter confined to be in the range zero

and unity (Siegel, 1959). If x shows the intrinsic
resistivities of the subsurface then the observed
apparent resistivities can be expressed as d=F(x)
where F is the forward modelling operator.  Similarly,
the effect of the intrinsic chargeabilities can be
expressed as dm=F[x(1-m)]. Consequently, the in-
version of IP data can be related to the inversion of
the resistivity data.   The apparent chargeability vector
ma can be expressed as:
ma= (dm- d )/ dm =(F[x(1-m)] - F(x)) / F[x(1-m)]    (4)
assuming that F-1 expresses the inverse operator  the
chargeability can be expressed as (Oldenburg and Li,
1994):
m= (F-1 [x(1-m)] - F-1 (x)) / F-1 [x(1-m)]     (5)

In other words the subsurface chargeability can be
obtained by equation 5 after performing two inver-
sions (using the described algorithm and identical
inversion parameters) on the data sets obtained from
the resistivity and the IP survey.

PRACTICAL CONSIDERATIONS

The smoothness matrix C describes the smoothness
relations between the parameters. The smoothness
pattern used in this algorithm is given by
dxj  = [ aj

x 
 ( dxj 

E + dxj 
W  ) + aj

z ( dxj  
N + dxj 

S  )
       -2 ( aj

x  +  aj
z  ) dxj ]     (6)

where dxj  is the smoothness of the jth block, E,W,N,S
indicate its four immediate neighbors,  aj

x   and aj
z are

weighting factors which control the roughness in the
horizontal and vertical direction respectively. They
are adjusted in such a way that they compensate for
the possible unequal length dxj , and thickness dzj of
the parameter j as suggested by deGroot and Constab-
le (1990).

In order render the algorithm fully automated, a
scheme for automatic generation of the parameter
space was included. The parameters are adjusted in a
pseudosection-like form: the number of parameters in
every layer is symmetrically reduced as depth
increases. That is because sensitivity analysis
indicated that parameters at the edges tended to
become irrelevant as depth increased. The number of
the parameter layers is set equal to the max n-
separation of the measured data set and the thickness
of each layer is set as 0.5 of the inter-electrode
spacing for every array used. Each parameter column
is positioned between two subsequent electrode
positions. In Figure 2a the resultant parameter mesh
for the case of 20 electrodes and n-separation of 5 for
the dipole-dipole, pole-pole and pole-dipole arrays is
depicted. Note also that the x dimension of side and
the z dimension of the bottom parameters were set to
be quite large (>8 electrode spacings) to simulate
infinite boundaries.

Further the option of changing the number of the
parameter layers and /or redefine the thicknesses of
the  existing  parameter layers was introduced  into the



6                                                                                             Tsourlos et al.

FIG. 1. A simplified flow-chart of the algorithm.
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scheme. This was made because in many cases there
is reliable prior information concerning the studied
area (i.e. prior information about the layer structure in
the studied area exists or the targets have known
depths). In Figure 2c the case for defining 3 layers
with different thicknesses is depicted.  

An empirical way for deciding the Lagranian mul-
tiplier (LM) at every iteration is used. This scheme
was preferred to the 1-D line search procedure (test
several LM values and find the optimum LM value by
interpolation) since the later proved to be quite time-
consuming: a modest line search needs at least three
repetitions of the forward modelling and matrix
inversion procedure.

The empirical scheme (which was established after
several tests with synthetic and real data) is the
following:
µκ = µκ−1 /2  if k< 4  or k=4
µκ = µκ−1        if k> 4   κ=1,2,..number of iterations     (7)

This scheme proved quite satisfactory and in the
tested cases produced inversions very similar to those
obtained by the 1-D line search scheme.

APPLICATION AND EVALUATION
 OF THE ALGORITHM

The described algorithm was applied to a series of
synthetic data. The finite element method was used as
the forward modelling technique. The Jacobian matrix
was calculated by the adjoint equation technique. The
matrix inversion was performed by the use of the
singular value decomposition routine of Press et al.
(1987).

Because of the option of assigning different thick-
nesses for a  parameter layer and since the finite
element mesh is created in accordance with the
parameter mesh, the initial Jacobian matrix (assuming
a homogeneous ground as a starting model) cannot be
precalculated and stored as a look-up file. Each
parametrization scheme will result in a different initial
Jacobian matrix. Thus, despite the use of the QN
technique the routine for calculating the Jacobian is
included in the scheme. This also gives the flexibility
of starting the inversion with any desirable initial
model and, most importantly, the option to chose the
``traditional'' slower inversion which involves full
Jacobian calculations (abandoning the QN technique).

Several comparison tests were made in order to
evaluate the performance of the algorithm. In Figure 3
the results of the inversion of the noise-free data of the
model of Figure 3a. The inversions with and without
the QN Jacobian matrix update can be seen in Figures
3b,c respectively. No significant difference as far as
the results are concerned can be observed. Both
techniques achieved a similar % RMS error and the
only difference lies to the convergence pattern (see
Figure 3d).

Similar results were also obtained from the
inversion of the dipole-dipole data (5% random noise)
from the model of Figure 4a. The inversions with and
without the QN Jacobian matrix update can be seen in
Figures 4b,c respectively. The convergence pattern of
both techniques is depicted in Figure 4d. The
advantage that the QN technique has as far as the
computational time is concerned can be seen clearly in
Figure 5.

Finally, in Figure 6b,c the inversion results of the
resistivity and IP dipole-dipole data respectively for
the models in Figure 6a are shown. The results
indicate that the algorithm successfully reconstructed
the highly polarized body.

APPLICATION OF THE
ALGORITHM TO REAL DATA

The algorithm produced satisfactory results when
synthetic data were considered but it is obvious that
conclusive/convincing test for a scheme that is
designed for field data interpretation can only be made
with real data. Furthermore, these real data should be
from sites where there is a good knowledge of the
existing targets in order to check/verify the inversion
results. This type of inversion examples are presented
below:

Drain (University of York)

The data set which was obtained over a drain at the
courtyard of the Department of Electronics at the
University of York was inverted using the QN Occam
inversion. The position of the drain in relation to the
measured section is depicted in Figure 7a. The
pseudosection of the dipole-dipole data set can be
seen in Figure 7b (24 electrodes, dipole length=60 cm,
nmax=8, 137 measurements).

The inversion after 6 iterations (7.2% RMS error)
can be seen in Figure 7c. Despite the 3-D geometry of
the target the inverted image delineates the limits of
the drain quite accurately - only the top of the drain is
somewhat misplaced - and no major artifacts appear.

“Sting” Cave (Williamson County, Texas)

A dipole-dipole data set was measured over a
known cave (4T Ranch area-Williamson County,
Texas) by Advanced Geosciences Inc. in order to
validate their automated resistivity system (Sting/
Swift system). The measured section involves 28
electrodes, 4.5 metres apart and the maximum n-
separation was 8 dipoles (171 data-points). The data
are shown in a pseudosection form in Figure 8b. The
position of the previously known cave in relation to
the section is depicted in Figure 8a.

The pseudosection  reveals  an  anomaly  situated at
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FIG. 3. Inversion of synthetic dipole-dipole data (noise-free, 15 electrodes, n=5): a) the model used to produce the data.
b) Inversion results using the QN Occam method. c) Inversion results using the Occam method. d) The convergence of
the two techniques.
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FIG. 4. Inversion of synthetic dipole-dipole data (5% added noise, 20 electrodes, n=6): (a) the model used to
produce the data. (b) Inversion results using the QN Occam method. (c)Inversion results using the Occam method.
(d) The convergence of the two techniques.
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FIG. 5. Comparison of the total run-time for 4 data sets between the QN Occam and Occam
inversion schemes (all tests were performed in a 486-66Mhz IMB-PC compatible).

FIG. 6. Inversion of synthetic resistivity and IP dipole-dipole data (noise-free, 20 electrodes, n=8): (a) the model
used to produce the synthetic data. (b)Resistivity Inversion results using the QN Occam method. (c) IP Inversion
results using the QN Occam method.
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the central part of the section (between 62 and 71
meters approximately which correspons to the
previously known cave and another resistive anomaly
(its centre is at 28 metres) which was interpreted as a
new cave. A borehole was drilled and this inter-
pretation was verified. The new cave was named
``sting'' and its position (as well as the position of the

borehole) in relation to the measured section is
depicted in Figure 8a.

The ``sting'' cave data were inverted using the
scheme. The QN Occam inversion results after 9
iterations are depicted in Figure 8c. The RMS error
for this inversion is 2.9%.This inversion was produced
by  adjusting  the thicknesses of  the  parameter  layers

FIG. 7. Reconstruction of the dipole-dipole data measured over a drain (University of York): a) the exact location
of the drain in relation to the measured section, b) the measured data set in a pseudosection form, c) reconstruction
using the QN Occam algorithm (6 iterations, 7.2% RMS error).
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according to the accurate  a priori information. The
inversion with the automatic parameter generation
(not shown here) produced a very similar image, gave
an error of 5.4% and slightly misplaced the central
cave in the depth scale. This is indicative of the
improvement of the data fit if the correct parameter

thicknesses are chosen. In any case, several possible
parameter schemes have to be tested in order to obtain
the optimal solution.
 The inverted image of Figure 8c delineates the two
known cases fairly accurate. An artifact at the left side
of the anomaly that correponds to the ‘sting’ cave is

FIG. 8. Reconstruction of the dipole-dipole data measured over caves (“Sting” Cave, Williamson County, Texas):
(a) the exact location of the known caves in relation to the measured section, (b) the measured data set in a
pseudosection form, (c) reconstruction using the QN Occam scheme (9 iterations, 2.9% RMS error).
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probably due to the fact that the measurements do not
fully describe the target. Further, a pronounced
resistive feature is now seen to be situated at the right-
hand side of the section (centre at x=98m, z=13m).
Judging by the accuracy of the reconstruction of the
known caves, all reasons are satisfied to interpret the
high resistive blocks as an indication of unknown
cave.

CONCLUSIONS

In this work an algorithm for inverting resistivity
and IP data is presented. The algorithm combines the
characteristics of the smoothness constrained
inversion with the computational savings that derive
from using the QN Jacobian update. The conducted
tests indicated that the algorithm has the following
features:

• It is considerably faster than the Occam inversion
for a typical size of data set. The fact that it takes a
further 1-3 iterations is a more than acceptable trade-
off considering the computational savings that it
involves.

• In all tested cases it produced results similar to the
Occam inversion and, in general, comprises all the
advantages (and limitations)  of the Occam inversion.
These are stability, robustness to noise, and inversion
with user defined characteristics.

• It is flexible since it can cope with any known
resistivity array and, further, it can readily cope with
``unconventional'' measuring schemes.

• Extra flexibility is achieved by allowing the
incorporation of variable smoothness and, most
importantly, variable parametrization.

• For all of the tested cases with real data the
algorithm produced reasonably good results which do
not suffer from algorithm and/or noise related
artifacts.

Overall, the algorithm proved to be a reliable and
useful tool for routine data interpretation and
produced results which are directly appreciable by
non-experts.
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